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Abstract

This paper quantifies the general equilibrium effects of financial innovation that increases
access to equity markets. I study an overlapping generations model with both idiosyncratic
and aggregate risk, solved with machine learning techniques. A benchmark economy with
limited stock market participation and rebalancing frictions matches the current dynamics
of macro aggregates, equity and bond returns, as well as wealth and portfolio concentra-
tion. A counterfactual experiment shows how widespread adoption of target date funds
would improve risk sharing, reduce inequality, and generate substantial welfare gains for
households in the bottom 90% of wealth distribution. The equity premium drops from 6.3%
to 2.5%, while the standard deviation of equity returns stabilizes from 24.7% to 15.2%. Full
adoption of target date funds would generate around 20% average welfare gains for peo-
ple in the bottom 90% at the expense of the top 10% who lose by more than 50% through
the redistribution of financial wealth. Asset pricing and welfare outcomes are very close
between an economy with target date funds and one without any participation costs or
rebalancing frictions.
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1 Introduction

Retirement saving dynamics have been changing. Prior to the recent introduction of target
date funds, stock market non-participation and inertia were prominent features among retire-
ment savers. Lately, the widespread adoption of target date funds has induced more stock
holdings and more frequent rebalancing. To answer how different retirement saving dynam-
ics matter for asset prices, welfare, and inequality requires modeling general equilibrium with
aggregate risk and heterogeneous agents. Solving such models, particularly with overlapping
generations (OLG), is computationally costly and, in some cases, impossible with conventional
techniques.

This paper shows that limited stock market participation and infrequent rebalancing imply
high equity premium and equity return volatility, consistent with the data. I show this result
using a model with heterogeneous equity access that I discipline with household portfolio
data by age and wealth. I solve the model with machine learning techniques to overcome
the curse of dimensionality. In addition, the adoption of a simple financial product, target
date funds, reduces equity premia and volatility, almost to the extent that these frictions are
absent. The equity premium drops from 6.3% to 2.5%, while the standard deviation of equity
returns stabilizes from 24.7% to 15.2%. Moreover, target date investing generates welfare
gains of approximately 20% remaining lifetime consumption equivalents for households in the
bottom 90% of wealth distribution through financial wealth redistribution. These outcomes are
comparable to a world without any participation costs or rebalancing frictions.

I study a new rebalancing friction that fixes the asset allocation of flows into portfolios. In
particular, agents allocate the flows of savings between equities and bonds using a fixed rule
and do not rebalance portfolios. This setup captures three prominent features in household
savings. The first feature is that the majority of U.S. households access financial products
through retirement accounts, and they rarely change their contribution allocation rules or
rebalance their portfolios (Ameriks and Zeldes, 2004, Choukhmane and de Silva, 2022). The
second feature is that a substantial fraction of U.S. households do not participate in the stock
market (Mankiw and Zeldes, 1991); hence, these households effectively have a flow allocation
rule that is 0% in stocks. The third feature is that the very rich households have a stably high
equity market share throughout booms and busts. For example, the equity market share of
the top 10% richest households is around 80% between 1989 and 2019, which suggests that the
richest households do not drastically change their flow allocations over time. The rebalancing
friction in this paper differs from the existing literature which constrains portfolio weights and
requires rebalancing to the targeted allocation.

Stock market non-participation and infrequent rebalancing generate inelastic asset de-
mands and concentrate equity holdings, implying high stock return volatility, Sharpe ratio,
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and equity premia. These frictions dampen the response of stock demand to aggregate shocks.
As a result, the stock price responds dramatically to clear the market. Moreover, stockowners
who have high savings are massively exposed to aggregate risk because stock returns tend
to be higher than bond returns. Without rebalancing, the portfolio share in stocks grows as
stockowners age, prompting these agents to demand high compensation for bearing volatile
stock returns. The combination of high stock volatility and high price of risk leads to high risk
premia in the economy.

After quantification of the benchmark model that features participation and rebalancing
frictions, I show that target date funds reduce these frictions almost completely. The bench-
mark economy matches macro aggregates, equity and bond prices, and portfolio distributions
by age and wealth. I then change portfolio choice constraints in the benchmark model to
capture financial innovation that reduces these frictions. In the first counterfactual exercise,
households by default invest in target date funds which have an age-dependent rebalanc-
ing strategy. The second counterfactual exercise removes both participation and rebalancing
frictions, and households freely optimize portfolios. Asset prices, welfare, and inequality out-
comes are similar under the two alternative asset market arrangements.

The OLG model in this paper connects lifecycle portfolios to asset prices in general equi-
librium. The aggregate state of the economy switches between expansions and recessions.
Households have time-separable CRRA preferences over consumption, and derive utility from
bequests. While working, agents receive labor income, which features an age profile and id-
iosyncratic risk that is higher in recessions. After retirement, retirees receive social security
payments. Households can save in stocks and riskfree bonds, subject to short-selling con-
straints. Competitive firms produce the consumption good with labor and capital. Firms
finance their investments in capital with equities and bonds, choosing their capital structure
and payout rules to maximize firm value and to smooth out payouts. The government balances
its budget by collecting taxes, financing spending, and supplying government bonds.

The benchmark economy introduces participation and rebalancing frictions to capture
stock market non-participation and inertia before target date funds. Specifically, households
receive stock market participation shocks that are correlated with income. Before getting hit
by a participation shock, households save in bonds only. When a participation shock arrives, a
household sets up a contribution allocation rule that fixes the stock-bond ratio for future flows
into the portfolio. Households do not actively rebalance portfolios afterwards.

Using parameter values that match household portfolio data, the benchmark model gen-
erates realistic macroeconomic, asset pricing dynamics; matches the lifecycle distributions of
wealth and portfolio; and produces extreme concentration of equity holdings by wealth. The
quantification process of the benchmark model involves two stages. In the first stage, I take
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parameters either from the literature or from data. This set of parameters include firm param-
eters, government parameters, and most household parameters. Then, in the second stage, I
use three household preference parameters to target three aggregate wealth moments: average
wealth-to-income ratio, retiree wealth share, and top 10% wealth share.

Stock market non-participation and infrequent rebalancing imply that consumption pro-
cesses observed in the data are compatible with high equity premia, high stock return volatil-
ity, and low riskfree rate, which typical consumption based asset pricing models fail to explain.
In particular, participation and rebalancing frictions separate the pricing of risky and riskfree
rates. The benchmark model in this paper deviates from a standard consumption based asset
pricing model because rebalancing frictions prevent participating households from freely op-
timizing their portfolio weights. As a result, the usual Euler equations for optimal portfolio
weights do not hold. Instead, households make consumption and savings decisions, taking
portfolio weights as fixed. Therefore, their Euler conditions hold for returns on their port-
folios, which are mixtures of the risky and riskfree rates. Nonparticipants, who tend to be
low-wealth agents and who have strong precautionary savings motives, price the riskfree rate.

Participation and rebalancing frictions help the model produce realistic wealth and portfo-
lio distributions. In the model, due to consumption smoothing incentives, agents save while
they are working and dissave in retirement, which leads to a hump-shaped wealth age profile
as seen in the data. Portfolio share in equity at any age, conditional on participation, is a con-
sequence of the initial allocation rule and subsequent market outcomes. The model-implied
equity market share by age closely track the data. Furthermore, the positive correlation be-
tween income and participation in the model implies that equity holders tend to be wealthy
individuals who received lucky draws of income shocks and who have been accumulating
assets at the equity return rate at a premium. Therefore, the model-implied equity holdings
are even more concentrated than wealth.

I show the adoption of a simple financial product, target date funds, can mitigate or undo
participation and rebalancing frictions, almost to the extent that the frictions are absent. To
show this, I consider two alternative asset market arrangements. In the target date economy,
households invest in target date funds by default but still face the same rebalancing frictions.
As a result, all portfolios follow the target date strategy. The free access economy then further
drops rebalancing frictions, allowing free choices of portfolio allocation at all times.

In the target date economy, where everyone by default invests in target date funds, the
average annual equity premium is 2.5%, as opposed to 6.3% in the benchmark economy. The
annualized standard deviation of equity returns drops from 24.7% in the benchmark economy
to 15.2%. This stabilization in equity returns is one reason for the fall in the equity premium.
The second reason is that the aggregate Sharpe ratio declines from 0.255 in the benchmark
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economy to 0.164, suggesting that target date investing improves risk sharing relative to the
benchmark economy.

Moving from the benchmark economy to the target date economy generates welfare gains
for the bottom 90% of wealth distribution but inflicts welfare losses for the richest 10% of
households at old ages. On average, agents in the bottom 90% gain around 20% remaining
lifetime consumption equivalents (the majority of which is redistribution), while the top 10%
agents lose up to 60% at old ages. The bottom 90% of households benefit both from increased
equity market participation and from stabilized equity returns. In contrast, the dramatic re-
duction in the equity premium leads to much lower returns for households in the top 10%
who are stock market participants in the benchmark economy. The richest 10% of households
suffer welfare losses as a consequence.

The target date outcomes are very close to an economy where agents freely optimize port-
folios, which I call the “free access economy.” In the free access economy, the equity premium
declines further to 2.0%, equity returns become even less volatile with a 14.7% standard devi-
ation, risk sharing improves, and the Sharpe ratio is 0.099. The similar asset pricing dynamics
between the free access economy and the target date economy lead to similar welfare out-
comes.

The target date and the free access economies are comparable in asset prices and in wel-
fare for two reason. The first reason is that the two economies both induce better risk shar-
ing by redistributing equity share towards the young and towards the poor, who tend to be
non-participants in the benchmark economy. Moreover, general equilibrium stabilizes stock
returns, which mutes welfare differences among the two economies from portfolios deviations.

I apply machine learning tools to address the technical challenge of solving the high di-
mensional OLG model. The individual state variables are age, equity holdings, bond holdings,
productivity, and contribution allocation rule. Just like any other heterogeneous agent model
with aggregate risk, the challenge stems from the fact that agents need to keep track of the
distribution of individual states as a state variable. This distribution function is an infinite
dimensional object. Traditional techniques, such as approximating the distribution function
with histograms or moments selected by the modeler, do not work well when OLG is present.
I adapt a machine learning based algorithm, DeepHAM, and reduce the dimensionality of the
problem (Han, Yang and E, 2021).

The algorithm has two components. In the first component, I replace the cause of the
model’s high dimensionality, the distribution of individual states, with generalized moments.
This method differs from the Krusell and Smith (1998) approach in two aspects. Firstly, the
moments are more general than standard moments (e.g., mean, second moments, etc). Sec-
ondly, I instruct the computer to choose the moments rather than specifying these moments
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ex-ante. The reason why approximating the distribution object with moments is sufficient is
because agents do not interact directly with each other but rather interact through the market.
Thus, instead of keeping track of how each individual matters for one another, I can focus on
how each agent matters for aggregate dynamics. Given that the order of the agents does not
matter, taking the moments suffices (Kahou, Fernández-Villaverde, Perla and Sood, 2021).

In the second component, reinforcement learning fits neural networks that parameterize
these generalized moments and policy functions. Neural nets are functions that are flexible
enough to approximate any continuous function, if sufficiently deep and wide (Cybenko,
1989, Hornik, Stinchcombe and White, 1989, Leshno, Lin, Pinkus and Schocken, 1993, Pinkus,
1999, Lu, Pu, Wang, Hu and Wang, 2017). In reinforcement learning, an artificial intelligence
(AI) assumes the role of an agent and "lives" in the model environment, trying to maximize
utility by adjusting neural nets that represent policy functions and generalized moments. After
learning for a sufficiently long period of time, the AI produces the correct policy functions
and the correct moments. In particular, I demonstrate that, after training, the computer has
learned to distinguish wealthy from poor agents, young from old agents even for the same
asset holdings.

Related Literature. This paper contributes to the existing literature on four fronts. Firstly, this
paper connects general equilibrium with an extensive literature documenting inertia and stock
market non-participation in household portfolio. In addition, this paper proposes and studies
a new rebalancing friction, bridging the literature on access frictions in financial markets with
empirical facts along two dimensions of heterogeneity: age and wealth. In doing so, this paper
speaks to the implications of these frictions for asset prices, for inequality and welfare, and
for lifecycle wealth and portfolio dynamics. Thirdly, this paper advances welfare analysis of
target date funds from choice problem frameworks to general equilibrium. Last but not least,
this paper adds to the literature studying stock prices in OLG economies, joining a series
of recent papers that demonstrate success of machine learning-based algorithms in solving
heterogeneous-agent models with aggregate risk.

Non-participation in the stock market and infrequent rebalancing are well-known patterns
in micro data on U.S. household portfolios. Before the introduction of target-date funds, many
households did not participate in the stock market (Blume, Crockett and Friend, 1974, Blume
and Friend, 1978, King and Leape, 1985, Mankiw and Zeldes, 1991, Poterba and Samwick, 1995,
Vissing-Jorgensen, 1998, 2002a,b, Agnew, Balduzzi and Sundén, 2003, Ameriks and Zeldes,
2004).1 Moreover, many households select the portfolio allocation of their retirement plan
contributions at enrollment and do not make any later changes to their contribution alloca-

1Ameriks and Zeldes (2004) analyze Surveys of Consumer Finances between 1962 and 2001. They estimate
the upper bound for stock market participation during this period to be 29.6% (1962), 43.7% (1983), 47.5% (1989),
49.6% (1992), 54.0% (1995), 57.0% (1998), and 59.7% (2001).
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tion. More generally, households rarely rebalance their portfolios (Samuelson and Zeckhauser,
1988, Madrian and Shea, 2001, Choi, Laibson, Madrian and Metrick, 2002a,b, Agnew, Balduzzi
and Sundén, 2003, Ameriks and Zeldes, 2004, Beshears, Choi, Laibson and Madrian, 2009,
Brunnermeier and Nagel, 2008, Bilias, Georgarakos and Haliassos, 2009, Calvet, Campbell and
Sodini, 2009, Mitchell, Mottola, Utkus and Yamaguchi, 2009, Bianchi, 2018).2

This paper also shows that non-participation in the stock market and infrequent portfolio
rebalancing are quantitatively important for understanding risk premia and volatility in asset
markets. These ideas go back to early work by Mankiw and Zeldes (1991) who document that
data on consumption growth by stockholders is more volatile than consumption growth by
non-participants. Early theoretical work assumes that non-stockholders save in bonds which
are in zero net supply (Saito, 1995, Basak and Cuoco, 1998). For the bond market to clear,
stockowners must therefore hold leveraged positions in stocks, which imply high risk expo-
sures by few investors and therefore higher risk premia. Allen and Gale (1994) endogenize the
participation decision with a fixed cost for participation. Vissing-Jorgensen (2002a) estimates
these participation costs to be large. Heaton and Lucas (1996) study how transaction costs
increase the equity premium in equilibrium. Guvenen (2009) adds heterogeneity in prefer-
ences as well as stochastic labor income of non-stockholders, which further concentrates risk
exposures among stockholders. Also related is Gabaix and Koijen (2021) who demonstrate
theoretically and empirically that inelastic asset demand can help understand high asset re-
turn volatility. This paper focuses on changes in participation and investment patterns over
the lifecycle, and I study a new rebalancing friction that fixes the portfolio weights for flows.

Infrequent rebalancing goes back to Grossman and Laroque (1990) who introduce ad-
justment costs in consumption, which implies that assets are illiquid. As a consequence,
households want compensation for holding illiquid assets in equilibrium, in addition to de-
manding the standard compensation for aggregate risk taking that is familiar from frictionless
consumption-based models. Lynch (1996) analyzes the quantitative importance of these liq-
uidity premia in discrete time, while Gabaix and Laibson (2002) derive analytical solutions in
continuous time. Chien, Cole and Lustig (2012) demonstrate that infrequent rebalancing is
also quantitatively important for understanding the high volatility in the Sharpe ratio of stock
market and its countercyclicality. They study an economy with households that differ in their
adjustment costs: some continuously rebalance, while others do so infrequently. This paper
analyzes rebalancing frictions in a model with strong age heterogeneity. Moreover, I study
whether target date funds can help address these frictions.

Finally, this paper adds to a literature that shows age is an important source of heterogene-

2For example, Ameriks and Zeldes (2004) study a 10-year panel dataset of retirement accounts in the U.S.
They find that 73% of plan participants made no change to portfolio asset allocation during the ten years, and an
additional 14% made only one change in ten years.
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ity to understand equity valuations. Abel (2003) connects the baby boom with stock prices and
shows that social security can potentially affect national saving and investment. Geanakoplos,
Magill and Quinzii (2004) argue that population booms and busts cause bull and bear stock
markets. Gârleanu and Panageas (2015) highlight the potential in preference heterogeneity
across age cohorts to resolve some key asset pricing puzzles.

The recent introduction of target date funds has fundamentally changed the landscape of
retirement investing. Mitchell and Utkus (2022) document that many households now invest
in target date funds because their retirement plans enroll them into these plans as a default
option. Parker, Schoar, Cole and Simester (2022) find that target date funds encourage stock
market participation, especially among younger savers, and induce a decreasing age profile of
stock holdings. These findings are in stark contrast with retirement portfolio patterns prior to
the target-date era.

This paper studies the general equilibrium implications of target date investing in a world
in which many households do not participate in the stock market and rarely rebalance their
portfolios. The existing literature on the introduction of target-date funds studies consumption-
portfolio choice problems with exogenous asset returns. Moreover, the literature compares the
welfare of target date investing with optimal portfolio choice in the absence of any frictions
in stock market participation and portfolio rebalancing. For example, Gomes, Kotlikoff and
Viceira (2008) solve a lifecycle model with endogenous labor supply and conclude that the in-
troduction of target date funds does not change welfare much relative to the optimal portfolio
case. An and Sachdeva (2021) emphasize the costs associated with using the wrong vintage
of target date funds, possibly due to incorrect assumptions about retirement age. Duarte,
Fonseca, Goodman and Parker (2021) develop a machine-learning algorithm to compute a
lifecycle model with inelastic labor supply and rich heterogeneity. They find that target date
funds lower welfare. Gomes, Michaelides and Zhang (2022) find that target date funds should
not just focus on selecting age-dependent portfolio shares but also exploit stock return pre-
dictability. In contrast, this paper shows that target date investing improves risk-sharing and
reduces wealth inequality in an equilibrium with limited stock market participation and infre-
quent portfolio rebalancing. The equilibrium with target date funds has lower risk premia and
asset price volatility, as well as higher welfare of households in the bottom 90% of the wealth
distribution.

Quantitative papers that study equity valuation in OLG economies with aggregate risk have
mostly used a version of the Krusell and Smith (1998) approach that finds a self-confirming
equilibrium where agents form beliefs about a set of moments selected by the modelers.
Storesletten, Telmer and Yaron (2007) study idiosyncratic risk and risk premia in an OLG
economy with production and incomplete markets. Favilukis (2013) jointly considers the rise
in wage inequality, decrease in stock market participation costs, and relaxation of borrowing
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constraints. He finds that these observations have led to the sharp rise in wealth inequality,
declines in interest rate and in equity premium. One exception in the quantitative strand of
the literature is Leombroni, Piazzesi, Schneider and Rogers (2020) who solve for the tempo-
rary equilibrium of a model with exogenous expectations to study the entry of baby boomers
into asset markets and inflation disagreement across age cohorts. The paper takes the joint
distribution of income and initial endowments by age directly from the data, and feeds in
survey forecasts to study equilibrium asset prices, wealth, and portfolios. In this paper, I use
machine learning tools designed to approximate the rational expectations equilibrium.

To solve the model numerically, I join a series of recent papers in solving heterogeneous-
agent models with aggregate risk by using machine learning tools. Kahou, Fernández-Villaverde,
Perla and Sood (2021) develop a deep learning algorithm that exploits symmetry in heteroge-
neous agent models and construct a concentration of measure in evaluating high-dimensional
expectations. Maliar, Maliar and Winant (2021) solve dynamic economic models by reducing
them into nonlinear regression equations fitted with neural networks. Azinovic, Gaegauf and
Scheidegger (2022) design deep equilibrium neural nets that approximate functional rational
expectations equilibria and demonstrate success in solving models with significant amount of
heterogeneity, uncertainty, and occasionally binding constraints. Most closely related is the
DeepHAM algorithm proposed in Han, Yang and E (2021). I use the method to solve a general
equilibrium model in which the state space includes the distribution of individual states over
a continuum of OLG households, and aggregate risk affects the distribution.

The remainder of the paper has the following layout. Section 2 sets up an OLG model of
retirement savings in general equilibrium, under three asset market arrangements: benchmark
economy, target date economy, and free access economy. Section 3 describes and evaluates
a machine leaning based algorithm that overcomes the curse of dimensionality. Section 4
quantifies the model and discusses why the benchmark model does not have puzzles that
are common among consumption based asset pricing models. Section 5 compares outcomes
across the three economies, in asset prices, inequality, and welfare. Section 6 concludes.

2 OLG Model with Idiosyncratic and Aggregate Risk

This section describes an overlapping generations model with idiosyncratic labor productivity
shocks and aggregate risk. Firms and the government endogenously supply assets, which
does not complete markets. Households consume and choose a portfolio of assets for their
savings.
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2.1 The Environment

To capture the booms and busts of the macroeconomy and asset returns, the model contains
aggregate risk in continuous time, t ∈ [0, ∞). The advantage of modeling in continuous time
is that certain decision problems admit closed-form solutions, alleviating pressure from the
task of model computation.

Aggregate State. The economy goes through expansions and recessions. The state of the
economy Zt ∈ {0, 1} follows a two-state continuous time persistent Markov chain

Zt =
NZ

t

∑
i=1

ξZ
i , (2.1)

where NZ
t is a counting process with intensity λZ(Zt−), and t− is the pre-jump time. Condi-

tional on Z(TZ
i −) (using δ to denote the Dirac measure), the distribution of the jump size

ξZ
i ∼

δ1, if Z(TZ
i −) = 0

δ−1, if Z(TZ
i −) = 1,

and TZ
i is the stopping time of the i-th jump. Simply put, λZ(Zt−)∆ is approximately the

probability that the economy switches from its current state Zt− in the business cycle to the
other state during the time ∆.

2.2 Household Sector

To model consumption-savings and portfolio decisions through the life cycle, this section intro-
duces a continuum of OLG households that populate the economy. Benchmark and alternative
asset market arrangements reflect frictions before and after financial innovations that increase
access to equity markets.

Birth, Aging, and Death. A household starts working at age aentry, retires at age aretire, and
lives at most until age aexit. The household dies with an age-dependent probability η(at)∆
during the time ∆, where at is current age of the household at time t. New households enter
to replace dying and exiting households, and the population distribution is stationary over
time.

Preferences. A household has time-separable CRRA utility over consumption u(·), discounts
the future at a constant rate ρ, and derives utility from bequests uB(·). Therefore, for a con-
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sumption process c, the discounted utility of a household at time t can be expressed as

Et

[∫ t+aexit−at

t
e−ρ(v−t)−

∫ v
t η(as)ds

(
u(cv) + η(av)uB(qv)

)
dv

]
, (2.2)

where

u(c) =
c1−γ

1 − γ

uB(q) = b
(b̄ + q)1−γ

1 − γ
.

Income Dynamics. Before retiring, each household inelastically supplies labor and earns la-
bor income. Household productivity l(at, yt) evolves according to a deterministic age profile
and an idiosyncratic component yt. Households are heterogeneous in idiosyncratic labor pro-
ductivity, yt ∈ {low, high, star}, where the “star” state captures top earners in the economy.
Labor productivity yt switches between the three states according to a Poisson jump process.
The probability of switching depends on both the pre-switch productivity state yt− and the
aggregate state Zt−. By allowing idiosyncratic and aggregate risk to be correlated, this setup
accommodates cyclical movements in labor income risk (Constantinides and Duffie, 1996, Gu-
venen, Ozkan and Song, 2014). Following Huggett (1996), retired households receive constant
social security payment s̄. This assumption is a rough approximation of the progressive re-
placement rate schedule of the U.S. Social Security program. It has the advantage of dropping
earnings history as a household state variable. Thus, at time t, a household receives income
mt(at, yt) which is either labor income wtl(at, yt) or social security income s̄. The wage rate wt

is the compensation for one efficient unit of labor supply.

A household consumes ct and saves (or dissaves) st from income mt(at, yt)

ct + st = mt(at, yt). (2.3)

2.2.1 Asset Market Arrangements in Benchmark Economy

To capture non-participation in the stock market and inertia, the benchmark economy features
frictions. Firstly, participation shocks determine whether a household can participate in the
stock market. The arrival rate of participation shocks can depend on the productivity of the
household. Secondly, households cannot rebalance their portfolios.

Assets. When households start working, they also start saving in a retirement account invested
in bonds bt and stocks et

nt = et + bt, (2.4)
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where nt is the household net worth.

The riskfree rate is r f
t . Equity payouts stay invested in equity (Duffie and Sun, 1990, Chien,

Cole and Lustig, 2012). The cum-dividend return rate on equity follows

dre
t = µe

tdt + σe
t dWt,

where W is a standard Brownian motion, and the drift µe
t and the volatility σe

t are determined
in equilibrium.

The contribution flow st into the account splits between bonds and stocks according to
the allocation rule ft, which indicates the fraction of the contribution that households invest
in equity. A fraction of households immediately participate in the stock market at aentry and
choose a contribution allocation rule. The remaining households start with an allocation rule
that has zero weight on equity, ft = 0 at time t when at = aentry. These households thus
initially only save in bonds.

Households who do not participate in the stock market (with ft = 0) may receive a par-
ticipation shock, which is a counting process N f

t . The intensity of this counting process may
depend on the productivity of the household λ f (yt−). Once the household receives a participa-
tion shock, the contribution allocation switches to Ft, which the household chooses optimally.
The contribution allocation rule of a household that receives a participation shock at time t
thus switches from ft = 0 to fs = Ft for s > t.

The jump intensity λ f (yt−) is dependent on pre-jump idiosyncratic productivity yt− to
capture that high-income individuals are more likely to participate in the stock market. Specif-
ically, ”star” earners can always participate and start to hold equity, if they have not already.
Households with the low productivity state, however, do not receive participation shocks,

λ f (yt−)


+∞ yt− = star

λ̄ f yt− = high

0 otherwise.

(2.5)

In addition, households do not actively rebalance existing assets.

Withdrawals are proportional to current portfolio shares (Chien, Cole and Lustig, 2012,
Choukhmane and de Silva, 2022). Therefore, the effective flow allocation to equity f̃t, depend-
ing on if the flow st is a contribution or a withdrawal, is

f̃t =

 ft st ⩾ 0
et

et+bt
st < 0.

(2.6)
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Equity and bond holdings evolve according to

det = (µe
tet + f̃tst)dt + σe

t etdWt

dbt = [r f
t bt + (1 − f̃t)st]dt,

(2.7)

and the household net worth nt evolves by

dnt = det + dbt = (µe
tet + r f

t bt + st)dt + σe
t etdWt.

In addition, households cannot short stocks or bonds

0 ⩽ et, bt and 0 ⩽ Ft ⩽ 1. (2.8)

Appendix A formulates the household problem in recursive form.

Bequest Distribution. A small fraction of households receive bequests at age aentry in the
form of the average household portfolio. The probability of receiving bequests depends on
idiosyncratic labor productivity yt (Hendricks, 2007, De Nardi, 2004, Wolff and Gittleman,
2014). To capture the fact that a substantial fraction of estates does not pass on as inheritances
but rather goes to expenses/charities that are not for production purposes, a certain amount of
terminal wealth flows out of the economy (Joulfaian, 1994, Hurd and Smith, 1999, Hendricks,
2001).

2.2.2 Alternative Asset Market Arrangements

This section considers two alternative asset market arrangements. In the first alternative, the
target date economy defaults any household savings into an appropriately chosen target date
fund. This economy thus features recent financial innovations in how households can save for
retirement. In the second alternative, the free access economy allows households to choose
their portfolio optimally, without any participation and rebalancing restrictions.

Target Date Economy. Households, by default, invest in target date funds but still face the
same rebalancing frictions as in the benchmark economy. Consequently, all household port-
folios follow the target date strategy. In other words, a household still chooses consumption
ct and savings st to maximize (2.2), subject to budget constraint (2.3). Benchmark portfolio
frictions (2.5)-(2.7) instead become

et

et + bt
= T(at) ∀t,

where T(at) is the exogenous target date glide path, the portfolio share invested in equity at
age at.
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The household net worth nt = et + bt evolves accordingly,

dnt = {[r f
t + T(at)(µ

e
t − r f

t )]nt + st}dt + σe
t T(at)ntdWt. (2.9)

Short selling constraints (2.8) stay the same.

Free Access Economy. There are no participation and rebalancing frictions like in the bench-
mark economy. Households can choose stocks and rebalance their portfolio anytime. As a
result, households choose consumption ct, savings st, and portfolio equity share Et to maxi-
mize (2.2), subject to budget constraint (2.3). Benchmark portfolio frictions (2.5)-(2.7) no longer
exist. The household net worth nt = et + bt evolves according to

dnt = {[r f
t + Et(µ

e
t − r f

t )]nt + st}dt + Etntσ
e
t dWt, (2.10)

where the drift is the expected return on the portfolio invested in bonds and stocks plus
any additional contributions (or minus any withdrawals). Any share Et invested in stocks
contributes to the volatility of net worth because of the volatility σN of stock returns. Short
selling constraints (2.8) stay the same.

2.3 Production Sector

This section describes the supply of goods and assets in the economy. There is a continuum of
identical production firms which decide about their capital structure and payouts. There are
closed-form solutions for firms’ optimal choices.

Technology. The firms produce consumption goods with capital and labor

Yt = Kα
t L1−α

t .

Firms own capital and hire labor at the competitive wage rate wt.

Capital evolves according to

dKt = [ιt − Φ (ιt)− δ (Zt)]Ktdt + σKtdWt,

where ιt = It/Kt is the investment rate, and investment is subject to adjustment cost

Φ(ιt) =
1
2

ϕ[ιt − δ(Zt)]
2.

The depreciation rate δ(Zt) is correlated with the aggregate state Zt, while Wt is a standard
Brownian motion that captures quality shocks to capital (Brunnermeier and Sannikov, 2014,
Fernández-Villaverde, Hurtado and Nuño, 2019). Expected excess return on capital is the
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marginal product of capital minus the riskfree rate, adjustment cost, and depreciation

ERt = MPKt − r f
t − Φ(ιt)− δ(Zt).

Payout and Capital Structure. Firms issue riskfree bonds B f
t to finance investments in risky

capital. Their balance sheets have assets

Kt = Nt + B f
t ,

where Nt is net worth of firms. Firms’ leverage is the ratio of debt to their assets, B f
t /Kt.

Moreover, the ratio of capital to net worth is

ωt =
Kt

Nt
=

1
1 − leveraget

.

The mapping from leverage B f
t /Kt to the capital-to-net-worth ratio ωt is one-to-one, and these

two variables move in the same direction.

Firms can rent capital to each other through a competitive rental market and collect rents.
Homogeneous firms all make the same decisions, and a representative firm exists. I describe
below the problem of the representative firm.

Firms maximize their value and smooth their payouts (Brav, Graham, Harvey and Michaely,
2005, Farre-Mensa, Michaely and Schmalz, 2014). To capture this behavior, I model that the
representative firm maximizes the expected present value of log payouts subject to its net
worth. The log function captures the incentive to smooth out payouts intertemporally. Specif-
ically, payouts Dt and the capital-to-net-worth ratio ωt solve

max
Dt,ωt

Et

[∫ +∞

t
e−ρ̄s log Dsds

]
, (2.11)

subject to the evolution of net worth

dNt =
([

r f
t + ωtERt

]
Nt − Dt

)
dt + σωtNtdWt. (2.12)

The firm maximizes a log objective function which involves the intertemporal smoothing
of payouts. To earn the excess return on capital, the firm would like to to increase its leverage
and thus its ratio of capital-to-net-worth ωt. However, more leverage also involves more risk
and the firm wants to smooth payouts. This trade-off leads to an interior solution for leverage
and, hence, for capital-to-net-worth ratio

ωt ≈ ERt/σ2,

14



which is increasing in the expected excess return on capital but decreasing in quality shock
volatility σ. The optimal payout yield is

ρt = Dt/Nt. (2.13)

The optimal payout yield equals to the firm’s discount rate ρ̄ on average but fluctuates
over time due to the adjustment costs. The details of this derivation are in Appendix B.
Finally, inflows/outflows from the household sector into the production sector open/close
such identical firms. Section 2.5 explains the aggregation in mathematical terms.

2.4 Government

To model inter-generational risk sharing through government programs and to model bond
supplies outside of the production sector, this section introduces the government which taxes,
transfers, and supplies government bonds.

The government collects income taxes at a constant tax rate τ. In addition, the government
borrows by issuing riskfree bonds Bg

t that make up a constant share g of the total bond market.
Firms issue B f

t . The total bond market is then Bt = B f
t + Bg

t .

Fiscal spending has three components: social security payments, debt payments, and dis-
cretionary spending Gt. The government adjusts discretionary spending Gt to balance budget(

(1 − τ)
∫
It

s̄1{ait>aret}di + r f
t Bg

t + Gt − τwtLt

)
dt = dBg

t ,

where i ∈ It indexes households alive in the economy at time t.

2.5 Market Clearing and Aggregation

To prepare for the equilibrium definition, this section first describes the market clearing con-
ditions and the evolution of aggregate variables.

Labor market clears by equating labor demand with labor supply∫
It

l(ait, yit)di = Lt. (2.14)

Bond market clears by equating household bond holdings with corporate and government
bond supplies

Bt =
∫
It

bitdi = B f
t + Bg

t .
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Equity market clears by equating household equity holdings with net worth of the firm

Nt =
∫
It

eitdi = Nt. (2.15)

The numeraire good market clears by Walras’s Law.

In the benchmark economy, the aggregate inflow of equity from the household sector to
the production sector is

Fe
t =

∫
It

f̃itsitdi + Dt, (2.16)

which includes new purchases of stocks and reinvested payouts. The aggregate inflow of
bonds is

Fb
t =

∫
It
(1 − f̃it)sitdi. (2.17)

The market clearing conditions plus aggregated resource constraint

Dt + wtLt = Ct + Fe
t + Fb

t + Gt

imply that aggregate capital evolves according to

Kt =

[
ιt − Φ(ιt)− δ(Zt)− Ot

]
Ktdt + (Fe

t + Fb
t )dt + σKtdWt

=

[
Yt − Ct − Gt

Kt
− Φ(ιt)− δ(Zt)− Ot

]
Ktdt + σKtdWt,

where Ot is the rate at which resources flow out of the economy because some estates do not
pass on as bequests, as described in Section 2.2.

2.6 Equilibrium

This section describes the recursive competitive equilibrium of the economy. The equilib-
rium definition clarifies how prices and allocations operate in compatibility with supply and
demand that arise from maximization problems laid out in previous sections.

In the benchmark economy, the household-specific individual state variables are age, po-
sitions in the bond and equity markets, contribution allocation rule, and idiosyncratic labor
productivity. In the target date economy and in the free access economy, the household state
variables are age, net worth, and idiosyncratic labor productivity. Denote individual state
variables (and suppressing time subscript) of households as x, and the associated distribution
is φ(·). Aggregate state variables consist of X = (Z, W, φ). The entire collection of household
state variables is then X = (x, X).
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The equilibrium consists of pricing functions (r, r f , MPK, w), household policy functions
(c, s, F in the benchmark economy; c and s in the target date economy; c, s, E in the free access
economy), and firm policy functions (D, ω, K, L), such that

• households maximize utility by solving (2.2)-(2.8);

• firms maximize discounted payouts (2.11)-(2.12);

• markets clear for labor, capital, bond, equity, and numeraire good;

• the law of motion for φ holds.

3 Computational Strategy

The high dimensionality of the model requires a computational strategy that is beyond conven-
tional methods. To overcome the curse of dimensionality, this section uses machine learning
tools to solve the model and evaluates the performance of the algorithm.

Similar to other heterogeneous-agent models with aggregate risk, the distribution function
φ over individual states is an aggregate state variable, an infinite-dimensional object which
makes the computation of this class of models challenging. The OLG structure introduces a
strong age dimension to the distribution, which makes it difficult to approximate. With the
OLG structure in continuous time, there are infinitely many generations present at any point
in time. In the benchmark model, there are five individual states, x ∈ R

5. To solve their opti-
mization problem, households thus need to keep track of the entire distribution φ of age, asset
holdings, contribution allocations, and idiosyncratic labor productivity. Current technology is
not capable of dealing with value function iteration in a setting with such high dimensionality
within reasonable time. A feasible and sensible representation of φ is necessary.

The model solution has two components. In the first component, I reduce the dimensional-
ity of the problem and approximate the distribution φ with its moments. The idea of replacing
the distribution φ with some moments of the distribution is familiar from Krusell and Smith
(1998). Their paper uses the first moment of the distribution, its mean, to compute an equilib-
rium model in which approximate aggregation holds. In their setting, the first moment alone
is enough to well approximate the rational expectations equilibrium. However, the OLG struc-
ture prevents an approximate aggregation (Krueger and Kubler, 2004). In the setting of this
paper, the first moment is not sufficient to approximate the rational expectations equilibrium.

To select the moments of the distribution φ, I use a machine learning algorithm. The
algorithm instructs the computer to choose generalized moments

φ̃ = E[G(x)], (3.1)
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where G is a basis function. In the case that G is a polynomial function, φ̃ consists of standard
moments (first, second, third moments, etc). G can also be more general than polynomials,
hence the name generalized moments (Han, Yang and E, 2021).

The intuition for why replacing φ by moments is sufficient to approximate the rational ex-
pectations equilibrium is that agents do not interact with each other but rather interact through
the market. Thus, instead of focusing on how each individual matters for one another, keeping
track of how each individual matters to the aggregate dynamics is sufficient. The interaction
form in equation (3.1) is common in the mean-field literature. In the typical application in this
literature, one generalized moment is sufficient. For the computation of the OLG model in
this paper, the algorithm chooses two generalized moments.

In the second component of the model solution, reinforcement learning fits neural networks
that parameterize the basis function G and the policy functions (Han, Yang and E, 2021). In
this component, the computer simulates the model environment with a cross section of agents.
An artificial intelligence (AI) lives in the simulated environment and maximizes realized life-
time utility along simulated life paths. In attempts to maximize utility, the AI learns the
utility-maximizing policy functions and the correct generalized moments.

Algorithm 1: DeepHAM (Han, Yang and E, 2021) Adapted to an OLG Economy

Input : 1) initialized neural nets C0 and G0 for policy functions and basis function; 2)
duplicates of the two neural nets Cdup and Gdup

1 for k = 1, 2, ..., Nk do
2 simulate a panel of OLG agents (with replacement) for TB + TE periods, using Ck−1

and Gk−1 (distributions of agents from TB + 1 to TB + TE represent the ergodic
distribution of the economy, whereas the first TB periods are burnouts)

3 for m = 1, 2, ..., Nm do
4 set Cdup = C(k−1)Nm+m−1 and Gdup = G(k−1)Nm+m−1

5 draw initial state variables of OLG agents XI ,0 from the ergodic distribution
6 initialize state variables of a single agent Xi,0 at age aentry

7 for t = aentry, ..., aexit do
8 update state variables XI ,t+1 using Cdup and Gdup

9 update state variables Xi,t+1 using C(k−1)Nm+m−1 and G(k−1)Nm+m−1

10 collect realized utility for the single agent ui,t
11 end
12 update neural nets to obtain C(k−1)Nm+m and G(k−1)Nm+m, based on collected

and discounted utility ui for the single agent
13 end
14 end

Output: trained policy functions and basis function CNk×Nm
and GNk×Nm

Algorithm 1 shows the pseudo code of the computational strategy. There are a total of two
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sets of two neural nets involved, with each set containing a policy neural net C and a basis
function neural net G. Depths, widths, and activation functions of the two sets of nets are
identical. The first set will go through reinforcement training, whereas the second set is for
storage purposes.

The training process involves two loops. The outer loop prepares the ergodic distribution
of the economy, by simulating for a long enough period of time which includes burnouts
(Judd, Maliar and Maliar, 2011). In the inner loop, the AI and the cross section of OLG agents
update their separate sets of neural nets iteratively, in the spirit of fictitious play (Brown, 1951,
Han and Hu, 2020, Hu, 2021, Han, Yang and E, 2021). In each play, the OLG agents use neural
nets from the previous iteration, whereas the AI tries to figure out the best response to the
OLG agents. Specifically, the inner loop initializes by drawing from the ergodic set, copies
parameters from the first set of neural nets to the second set, and adjusts the first set of neural
nets based on realized utility via stochastic gradient descent. The loss function is the empirical
counterpart of (2.2).

The purpose of the cross section of OLG agents is to provide the AI with the model en-
vironment from which the AI tries to learn. For this reason, the cross section of OLG agents
and the individual AI use separate sets of neural nets to obtain a well defined loss function.
Without doing so, general equilibrium prices would become manipulable to the AI who really
should take prices as given instead. After training for Nm lifetimes, with each lifetime lasting
from aentry to aexit, the algorithm falls back to the outer loop for a new ergodic set of individual
states and repeats.

This adaptation deviates from the original DeepHAM algorithm by dropping the value
function training. In technical terms, I use a plain vanilla version of policy gradient training as
opposed to actor-critic. This decision is for theoretical and practical reasons. On the theoretical
side, agents in the Han, Yang and E (2021) setup solve infinite-horizon problems, whereas the
setup of this paper has a life cycle component. To obtain the value function at every age
means the training must alternate between ages. Moreover, while training the value function
recursively makes sense in an infinite-horizon setting, it is not obvious that their recursive
definition can easily apply in the finite horizon case. Last but not least, analysis in this paper
does not require the value function. On the practicality side, training the value function slows
down the algorithm and takes up memory. The OLG plus heterogeneity structure in this paper
is heavily demanding in memory. Given the hardware constraints, training additional neural
nets for the value function would come at the cost of less accurate simulations by decreasing
the size of the cross section. For these theoretical and practical reasons, the adaptation removes
the value function training.

A second deviation of this adaptation is that the inner loop takes place multiple times
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before re-simulating for a new ergodic set. In the original algorithm, Han, Yang and E (2021)
obtain a new ergodic set after every neural net update. When the cross section is large, as in
the setting of this paper which involves OLG and heterogeneity within each age, simulation
becomes costly. This training scheme in the adaptation shortens the time spent on simulations.

3.1 Generalized Moment and Statistics of the Economy

This section investigates the relationship between the generalized moments and other statistics
from the economy. Commonly used proxies for the distribution object in the literature show
resemblance to the generalized moments picked by the computer, although not identical.

Figure 1: Time Series: Generalized Moment and Other Statistics

Notes. Time series plot the generalized moments and other statistics from the economy for 100 quarters. The
blue and the orange lines represent the generalized moments, whereas the red line stands for alternative
statistics. These statistics include: mean of capital holdings, second moment of capital holdings, fraction of
constrained agents (in the bond market), wealth share of workers, and payout yield. Series are scaled.

Figure 1 plots scaled time series of the learned generalized moments and statistics of the
economy. The statistics selected in the plot are common choices in the literature as proxies
for the infinite dimensional distribution object. These proxies are (from the top-left to the
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bottom-right): mean of capital holdings, second moment of capital holdings, wealth share
of workers, and payout yield. Many of these statistics move closely with the generalized
moments, although none of them completely coincide. Appendix F demonstrates that all
statistics above affect the generalized moments, in addition to the capital stock in the economy.
Appendix E investigates the learned basis function and finds that age is a strong dimension in
the OLG economies, confirming the intuition in Krueger and Kubler (2004).

Among the four statistics shown in Figure 1, mean of capital holdings and payout yield
show the closest relationship to the generalized moment. As argued in Storesletten, Telmer
and Yaron (2007) who solve an OLG model with aggregate risk, the mean of capital holding
has high predictive power for future capital stocks. Payout yield is known to predict stock
excess returns (Campbell, 1991, Cochrane, 1992, Ang and Bekaert, 2007). The fact that the gen-
eralized moment shows similarities to these statistics indicates that the computer has learned
to abstract important information from the distribution of individual states.

3.2 Implementation and Accuracy Check

This section discusses the implementation details of the training process, which includes the
convergence speed and accuracy.

The solve the continuous time model numerically, I use the standard Euler-Maruyama
discretization method. Following Krusell and Smith (1998), I use a large number of agents
to replace the continuum. The difference is that given there is a strong age dimension in the
model, I simulate a large number of agents per age cohort. Specifically, I use 200 agents for
each of the 201 ages. The resulting total number of agents is 40200. Each episode takes about
40 seconds, and every 80 episodes make up an epoch. Model is trained for 4344 epochs to
reach convergence. Total run time is around 24 days on an NVIDIA A100 graphic card with
40G memory.

After convergence, the neural nets start oscillating around the solution. To check for ac-
curacy, I look at both the average relative consumption errors in the cross section and the
average relative consumption errors across the 201 age cohorts. The advantage of using the
relative Euler equation error is that this measure is invariant to the magnitude of consumption.
The average relative consumption error across individuals is about 1.7% on the ergodic set of
the economy, which means that the neural network determined consumption is on average
1.7% different from the Euler equation implied consumption. Since each agent carries trivial
weight in a model with a continuum of agents, I also check the average relative aggregate
consumption error which is 0.9%.
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Figure 2: Average Relative Consumption Errors

Notes. Each epoch contains 80 episodes. The upper figure checks the relative consumption errors across all
individual agents who are unconstrained. Unconstrained agents are those who consume less than 96% of all
cash on hand (wealth and income combined). The lower figure checks the relative aggregate consumption error.

4 Quantification of the Model

This section discusses the quantification strategy. Macro aggregates and asset pricing dynam-
ics, lifecycle savings/portfolio match empirical observations, untargeted. Fitting these untar-
geted moments: testifies to the validity of the underlying mechanisms in the model; provides
the foundation for studying counterfactual asset market arrangements and the corresponding
general equilibrium consequences.

I use a two stage procedure to quantify the model. In the first stage, I select parame-
ter values from the existing literature and match parameters to their data counterparts. In
the second stage, I estimate three household preference parameters to match three aggregate
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wealth moments.

Table 1 shows the parameter values from the first stage of the quantification. For param-
eters in the household panel, I measure directly from the data before 2001, which was before
the rise of target date funds. For the rest of the economy, I take parameters from the existing
literature.

Table 1: Parameters from Literature and Data

Parameter Notation Value Source

Aggregate State
switching intensity λZ(·) 0.125 Krusell and Smith (1998)

Households
enter, retirement, death age aentry, aretire, aexit 30,65,80
age distribution 1998 US Mortality Database
mortality risk η(a) 1998 US Mortality Database
CRRA γ 10
Income age profile Imrohoroglu, Imrohoroglu and Joines (1995)
labor productivity Den Haan (2010) and

Dávila, Hong, Krusell and Ríos-Rull (2012)
social security s̄ 0.3 SSA (See Appendix C for comparison)
participation at aentry 0.5 participation rate, age 30
participation intensity λ̄ f 0.002 participation rate, age 50
bequest arrival by type 0, 0.05, 0.1
glide path T(·) CRSP Mutual Fund Database, 2006-2021

Production Firms
capital share α 0.36 Kydland and Prescott (1982)
adjustment cost ϕ 1 Hall (2002)
capital volatility σ 0.1 Brunnermeier and Sannikov (2014)
depreciation δ(Z) 0.09, 0.11 Krusell and Smith (1998)
average payout yield ρ̄ 0.049 Fernández-Villaverde, Hurtado and Nuño (2019)

Government
income tax rate τ 0.2 De Nardi and Yang (2014)
government bond ḡ 1/3 SIFMA Research

Aggregate State. The switching intensity between expansions and recessions is from Krusell
and Smith (1998). On average, expansions and recessions last 8 quarters. The switching
probabilities are symmetric between the two states.

Households. The start of the working life, retirement, and death age are 30, 65, and 80 years,
respectively. The age distribution and mortality risk by age are from the 1998 U.S. Mortality
Database. The risk aversion coefficient is 10, which is the upper limit considered by Mehra and
Prescott (1985). The income age profile comes from estimates by Imrohoroglu, Imrohoroglu
and Joines (1995). Three idiosyncratic labor productivity states and their transition matrix
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come from Den Haan (2010) and Dávila, Hong, Krusell and Ríos-Rull (2012). The fraction of
households in the low productivity state is roughly 3% in expansions and 10% in recessions.
There are roughly 9% stars in expansions, and 6% in recessions. Social security is constant
across agents and across time (Huggett, 1996). The replacement rate is higher for low income
households to reflect progressivity of the Social Security System. As shown in Appendix C,
the replacement rates of social security payments in the model are very close to the ones
estimated from the data across the majority of the income distribution (Goss, Clingman, Wade
and Glenn, 2014).3 The arrival intensity of participation shocks for the high type matches the
share of stock market participants aged 30 years and 50 years, which is when participation rate
peaks (Survey of Consumer Finances, 1995-2001). Finally, 5% of high types and 10% of star
types receive bequests upon entrance into the economy. Appendix G shows the (quarterly)
transition matrices, states, stationary distributions, and normalization.

Figure 3: Target Date Funds Glide Path
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Notes. Center for Research in Security Prices (CRSP) Mutual Fund Database. Annual fund summary file,
2006-2021. Target date funds are identified using Lipper class labels that lead with MAT.

For the target date glide path T(a), I use data from the Center for Research in Security
Prices (CRSP) Mutual Fund Database. Figure 3 plots the average portfolio allocations of target

3Admittedly, the model does not capture the extremely high replacement at the very bottom. However, as
later elaborated on in Section 5.2, the model is not meant to capture the very bottom of the wealth distribution
who do not hold much financial wealth at all. Even though this group of individuals are very important to study,
they contribute trivially to the aggregate asset prices.
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date funds along with 95% confidence intervals. The y-axis shows the portfolio share in
percentage points, with the x-axis being the number of years from the targeted retirement
date, with the target date normalized to 0. Target date funds mostly invest in stocks and fixed-
income assets. Around 40 years out from the target date, target date funds invest about 80%
of their portfolio in stocks. As time approaches the target date, the portfolio share in equity
slides lower, reaching 40% at the retirement date, and continues to decline post-retirement.

Production Firms. The capital share is 0.36 as in Kydland and Prescott (1982). The capital
volatility is from Brunnermeier and Sannikov (2014) who also study quality shocks to capital.
Previous literature has estimated adjustment cost to range from 0.5 to 2 using disaggregated
data (Shapiro, 1986, Hall, 2002, Cooper and Haltiwanger, 2006). Adjustment cost 1 is ap-
proximately the average across industries as estimated in Hall (2002).4 The depreciation rate
is equal to 10% on average, which is standard in the business cycle literature. Expansions
(recessions) increase (lower) the depreciation rate by 1%, which amounts to the same size
of the aggregate shock in Krusell and Smith (1998). The average payout yield is 4.9% as in
Fernández-Villaverde, Hurtado and Nuño (2019), which is approximately the average payout
rate of non-financial corporate businesses in the U.S. according to the Financial Accounts of
the United States between 1970 Q1 and 2021 Q4.

Government. Income tax rate τ is 20%, which is in line with the literature (De Nardi and
Yang, 2014). Government bonds make up around one third of the entire U.S. fixed-income
asset market during the 1990s, according to the SIFMA Capital Markets Fact Book. So, the
fraction of government bond supply as a fraction of the total bond market g equals to 1/3.

4.1 Targeted Moments

In the second stage of the quantification, I estimate household preferences to match moments
of the wealth distribution. In particular, I estimate the household discount rate ρ, the bequest
function intensity b, and the bequest function intercept b̄ to match the average wealth-to-
income ratio, the share of wealth owned by retirees, and the top 10% wealth share.

The calibration matches the wealth-to-income ratio, retiree wealth share, and top 10%
wealth share using the household discount rate ρ, bequest intensity b, and bequest intercept b̄.5

The data moments exactly identify this GMM estimation. The household discount rate gov-
erns the patience of households, which affects their wealth accumulation and is thus closely
related to the average wealth-to-income ratio. Bequests matter more for older households than
for younger households. A higher bequest motive translates into lower withdrawals during

4In Hall (2002), he estimates the average adjustment cost, using quadratic specification, to be 0.91, which is in
line with other estimates using micro data (Shapiro, 1986, Cooper and Haltiwanger, 2006).

5Throughout this paper, household wealth is financial wealth which excludes housing and business wealth.
The data counterpart is non-housing non-business net worth.
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retirement. The bequest function intensity b therefore targets the retiree wealth share. Finally,
the bequest function intercept b̄ determines the bequest size of rich households. The role of
the bequest function intensity is to break homotheticity in the household problem by changing
the marginal utility of bequests relative to the marginal utility of consumption. For a positive
bequest intensity parameter (b̄ > 0), bequests are a luxury good (Nardi, French and Jones,
2010). For a high value of the bequest intensity, rich agents save disproportionately more
out of income compared to other households. The bequest intercept thus targets the top 10%
wealth share.

Table 2: Targeted Moments
Targeted Moments

Top
10%
Wealth

Wealth-
Income

Retiree
Wealth

Share Ratio Share

Data 0.695 4.033 0.268
Benchmark 0.610 4.337 0.232

Notes. Survey of Consumer Finances 1995, 1998, and 2001. Household wealth is calculated as non-housing,
non-business net worth. Retiree wealth share is for households above age 65. The table excludes households
with negative net worth.

Table 2 shows that the model-implied moments are close to their empirical counterparts.
The model does not hit these targets exactly, because of long computational times. Another
reason for these small mismatches could be the difference between actuarial survival prob-
abilities and subjective mortality beliefs (Heimer, Myrseth and Schoenle, 2019, Grevenbrock,
Groneck, Ludwig and Zimper, 2021).

4.2 Untargeted Moments - Aggregates

The model is able to generate dynamics for macro aggregates and asset prices that compare
well with the data. Moreover, the model does not feature standard asset pricing puzzles.

Table 3 shows that the benchmark model does well in matching the dynamics of macroe-
conomic aggregates and financial variables. The left panel displays the quarterly standard
deviations of the growth rates in output, consumption, investments, and labor supply for the
benchmark model and the data. The right panel shows the equity premium and its volatility,
Sharpe ratio, and leverage. The quantitative fit of the model is reassuring. It indicates that the
setup provides a useful tool to study the introduction of target date funds.

The model’s asset pricing implications improve upon standard consumption-based asset
pricing models. The equity premium is sizable, and the average riskfree rate is low. Moreover,
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Table 3: Macroeconomic Aggregates and Financial Moments

Quarterly SD (Growth Rate) Annualized Asset Returns
Y C I L E[rt − r f

t ] σ(rt − r f
t ) SR leverage

Benchmark 0.017 0.018 0.034 0.010 0.063 0.247 0.254 0.572
Data 0.012 0.012 0.041 0.014 0.066 0.178 0.371 0.560

Notes. The data sample contains 1970Q1 to 2022Q2 (210 quarters). Macroeconomic variables are from the
Federal Reserve Bank of St. Louis. All data series are real and seasonally adjusted. Output is the gross domestic
product. Consumption is the personal consumption expenditures. Investment is the gross private domestic
investment. Labor supply is the hours worked for all employed persons (nonfarm business sector). For the
model, simulation period is also 210 quarters. Asset prices come from CRSP value weighted index and the 1
month T-bill rate. Leverage is from estimate in (Graham, Leary and Roberts, 2015) for U.S. public firms in 2010.

the model implies stock return volatility and Sharpe ratio that are comparable with the data.
The model slightly overstates the return volatility, implying a lower Sharpe ration than in
the data. Overall, the properties of model-implied asset prices closely mirror their empirical
counterparts.

The success in matching the equity premium does not come at the cost of unrealistic
macroeconomic and financial aggregates. As the left panel shows, quarterly standard de-
viations for growth rates of output, consumption, investments, and labor supply are roughly
consistent with the data. Furthermore, firm leverage in the model is very close to the empirical
estimate for U.S. public firms in 2010 (Graham, Leary and Roberts, 2015).

4.2.1 Untargeted Moments - Aggregates: Discussion of Asset Pricing

To give intuition why the benchmark setup does not result in asset pricing puzzles, this sec-
tion discusses how the benchmark model deviates from a standard consumption-based asset
pricing model. Both the demand side of assets and the supply side can help understand the
asset pricing dynamics in the model.

The benchmark model is able to simultaneously match asset prices and macro aggregates
because participation and rebalancing frictions separate the pricing of the risky and the risk-
free rates. This segmentation avoids puzzles seen in common consumption based asset pricing
models which price both the risky and the riskfree rates with the same consumption process.

Households can adjust their savings at any time, implying that standard Euler equations
hold for the return on savings, which are portfolios of stocks and bonds. For non-stockholders,
the portfolio consists only of bonds, so that only the Euler equation for the riskfree rate holds.
These households tend to be poor, both because lower productivity households have a lower
arrival rate of participation shocks, and because these households earn a lower average return
on savings than stock-owners. There are many states of the world in which these poor house-
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holds may like to borrow but they face a borrowing constraint. To avoid these states of the
world, poor households will save and thereby depress the riskfree rate in equilibrium relative
to an economy without participation frictions.

The portfolio of stockholders contains both bonds and stocks, but their Euler equation
only holds for the return on the entire portfolio, not for the return on each asset individually.
The reason is that rebalancing frictions prevent stockholder-households from adjusting their
portfolios. Instead, household choose how much to save and sell their portfolios, with fixed
portfolio weights.

A two-agent economy with participation and rebalancing frictions can illustrate the intu-
ition for these asset pricing dynamics at the extreme. Suppose one agent can only hold stocks,
while the other agent only holds bonds. Stocks and bonds are in non-zero net supply. In
equilibrium, the stockowner will price stocks, and the bond holder will price the riskfree rate.
The stockowner has massive exposure to risk and demands a high compensation, pushing up
the equity return rate. The intertemporal smoothing motives of the (poorer) non-stockowner
will determine the riskfree rate. The segmentation of stock and bond pricing will avoid the
well-known asset pricing puzzles seen in a standard consumption-based asset pricing model.

It remains to clarify how the stock owner ends up with the high exposure to risk, which
the stylized two-agent model abstracts away from. Stock returns are on average much higher
than the riskfree rate. As a consequence, mechanically, a stock market participant’s portfolio
share in equity increases with time, due to rebalancing frictions. This mechanism concentrates
equity holdings even more, in addition to the concentration that participation frictions induce.
Moreover, rebalancing frictions prevent stockowners from choosing portfolio shares, so these
agents still do not price the riskfree rate. Thus, the segmentation intuition remains intact, even
if stockowners in the full model hold both stocks and bonds.

On the supply side, firms invest in risky capital and issue bonds. They freely choose their
optimal portfolio of capital and bonds, which implies that standard Euler equations for these
assets hold with log preferences. However, firms’ preferences are over payout streams which
are highly volatile and almost perfectly correlated with returns on capital. As a result, the
expected return on capital holdings is high. Since firms are also leveraged, expected returns
on (levered) equity are even higher than expected returns on capital. Firms price the riskfree
rate low due to high elasticity of intertemporal substitution associated with logarithmic utility.

A direct consequence of rebalancing frictions is that asset demand is relatively inelastic.
Recent literature have shown both theoretically and empirically that inelastic asset demand
can amplify asset return volatility (Gabaix and Koijen, 2021). The benchmark model gener-
ates inelastic demand because rebalancing frictions prevent households from adjusting asset
positions to movements in asset prices. For example, when a bad shock hits the capital stock,
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equity price drops. In the absence of rebalancing frictions, households would sell bonds and
buys stocks because the expected equity premium is high. This rebalancing behavior pushes
up the demand for equities, so the stock price does not have to fall all the way. In the bench-
mark model, however, asset demand is inelastic. The stock price falls deeper to clear the
market. The logic for a positive shock is similar. Overall, the equity price is more volatile in
the benchmark model than a typical consumption asset pricing model.

On the supply side, the firm asset demand elasticity is high, but participation frictions
induce a high leverage. The result of limited equity holdings is that equity financing is expen-
sive for firms. As a result, firms use a lot of debt financing for their investments, leading to
volatile net worth processes of the firms.

4.3 Untargeted Moments - Life Cycle

Because of the OLG structure, the model has implications for lifecycle wealth and portfolio
dynamics. This section compares wealth age profile and equity market share by age in the
model and the data. Despite not explicitly targeting these lifecycle savings moments, the
model matches both distributions very closely.

Figure 4 compares the wealth age profile in the model and in the data. Both the model and
the data show a hump-shaped wealth age profile. Due to consumption-smoothing incentives,
workers save while income is high and draw down savings in retirement. As a result, house-
hold wealth peaks around retirement age. During late retirement, the bequest motive becomes
strong, and households do not consume all wealth.

Figure 5 studies equity market share by age, defined as the ratio of total equity holdings
by an age cohort to the total equities outstanding in the economy . The dashed line shows the
distribution in the benchmark model, while the solid line shows the distribution in the data.
Mid-life households aged 50-60 years hold around 40% of equity shares in the economy, while
younger and older agents hold relatively less. Overall, the distribution of equity holdings by
age are similar in the benchmark economy and the data.

The main driver in the model that leads to such a realistic distribution is rebalancing
frictions. Recall that the only portfolio-related targets used in quantification are stock market
participation rates at age 30 and 50. Conditional on participation, rebalancing frictions in the
model imply that portfolio equity share at any age depends only on the initial allocation and
the subsequent market outcomes. In fact, Section 5.2 re-visits this plot when asset market
arrangements change, the distribution of equity market share by age is drastically different.
This finding confirms the importance of rebalancing frictions in understanding household
lifecycle portfolio dynamics before the rise of target date funds.

It is important for the benchmark economy to match portfolio holdings by age. This good
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Figure 4: Wealth Age Profile

Notes. Survey of Consumer Finances 1995, 1998, and 2001. Household wealth is calculated as non-housing,
non-business net worth. Wealth, in both the model and data, has been normalized by the mean household
wealth. The graph excludes households with negative net worth.

fit of the model provides a solid foundation for studying how alternative asset market ar-
rangements modify inter-generational risk sharing and the accompanying general equilibrium
effects.

4.4 Untargeted Moments - Inequality

Besides an OLG structure, the model also features idiosyncratic risk and incomplete markets.
This setup means that the model bears implications for inequality. This section demonstrates
that the model replicates the extremely concentrated equity holdings by wealth in the data,
without targeting any moments of the distribution of equity holdings.

Figure 6 breaks down equity shares by wealth in the benchmark economy and in the data.
An immediate pattern that stands out from the data is that the distribution of equity holdings
is extremely concentrated. The top 10% richest households hold close to 80% of the equity
shares in the economy. The model produces the same level of concentration in equity holdings
as observed in the data due to frictions in participation and in rebalancing. Recall that the
calibration procedure only targets the top 10% wealth share. For equity holdings to be even
more concentrated than the wealth distribution, richer households must have higher portfolio
shares in equity.

In the model, households who end up at the top of the wealth distribution are equity
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Figure 5: Equity Market Share by Age

Notes. Survey of Consumer Finances 1995, 1998, and 2001. Household wealth is calculated as non-housing,
non-business net worth. The graph excludes households with negative net worth.

market participants who have been enjoying the equity premium for a long time. The posi-
tive correlation between equity participation and idiosyncratic productivity means that equity
participants tend to have lucky histories of idiosyncratic productivity draws. In addition, re-
balancing frictions imply that, conditional on participation, the portfolio share in equity results
from the initial allocation and subsequent market outcomes. Given that equities tend to out-
perform bonds, the portfolio share in equities trends upwards as agents age. Agents around
50 to 60, just before they start drawing down savings, tend to be the richest households whose
portfolios are also high in equities.6 Therefore, the distribution of equity holdings is more
concentrated than the distribution of wealth.

The model does predict slightly higher equity holdings for the bottom 50%. This is because,
in the data, there are impoverished households that do not hold financial products at all.
Admittedly, this paper does not explicitly model this group of households, whose welfare is
very important to study. From an asset pricing perspective, however, the contribution from
households who are limited in investable wealth to general equilibrium asset prices is minimal.
The slight mismatch towards the very bottom in Figure 6 does not cause a grave concern for
general equilibrium analyses in this paper.

Fitting the cross-section equity holdings by wealth in Figure 6 validates again the portfolio
dynamics in the model, which inertia and stock market non-participation govern, for house-

6Figure 7 further explores the second mechanism.
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Figure 6: Equity Market Share by Wealth
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Notes. Survey of Consumer Finances 1995, 1998, and 2001. Household wealth is calculated as non-housing,
non-business net worth. The graph excludes households with negative net worth.

holds across the wealth distribution. It is important for the benchmark economy to produce
a good fit of the inequality in asset holdings. The model can speak to how alternative asset
market arrangements alter inequality measures and the accompanying general equilibrium
effects.

5 Counterfactuals: Target Date and Free Access Economy

To assess the implications of inertia and stock market non-participation for asset prices, in-
equality, and welfare, this section conducts two counterfactual exercises that resemble recent
and continued financial innovations that reduce these frictions.7 Widespread adoption of tar-
get date funds would improve risk sharing, reduce inequality, and generate substantial welfare
gains for households in the bottom 90% of the wealth distribution. Outcomes are very close
between an economy with target date funds and one without any participation costs and
rebalancing frictions.

5.1 Counterfactuals: Asset Prices

This section studies how counterfactual asset market arrangements change equilibrium asset
prices. Compared to the benchmark economy, target date investing lowers equity premium,
stabilizes equity returns, and decreases the aggregate Sharpe ratio. Results are similar for the

7The main quantitative exercises considered here are comparisons between different stochastic steady states.
Appendix I investigates outcomes along the transition path.
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free access economy.

Table 4: Counterfactuals: Asset Prices
Annualized Asset Returns Sharpe Ratio and ω

E[rt] σ(rt) E[r f
t ] σ(r f

t ) E[rt − r f
t ] σ(rt − r f

t ) SR ωt σ(ωt)

Benchmark 0.058 0.247 -0.004 0.007 0.063 0.247 0.255 2.339 0.728
Target Date 0.020 0.152 -0.005 0.008 0.025 0.152 0.164 1.527 0.011
Free Access 0.016 0.147 -0.005 0.008 0.020 0.147 0.143 1.471 0.004

Notes. Benchmark economy features frictions in stock market participation and in rebalancing. Target date
economy has all households following the target date glide path. Free access economy allows free participation
and rebalancing for everyone.

Table 4 compares moments on asset prices for the benchmark economy, the target date
economy, and the free access economy. The left panel displays annualized average return
rates and standard deviations of, from left to right, equity, bond, and risk premium. The right
panel shows the aggregate Sharpe ratio, average capital-to-net worth ratio ω, and its quarterly
standard deviation.

Compared to the benchmark economy, the two counterfactual worlds have drastically dif-
ferent asset pricing dynamics. In the target date economy, equity returns are lower and more
stabilized: the average equity return rate is 2.5% with standard deviation 15.2%, compared
to 6.3% and 24.7% respectively in the benchmark economy. The riskfree rate does not show
noticeable differences between the benchmark and the target date economies. Consequently,
lower and more stabilized equity returns translate into the smaller and less volatile equity pre-
mium in the target date economy. In addition, the aggregate Sharpe ratio diminishes by almost
two thirds, diving from 0.255 in the benchmark economy to 0.164 in the target date economy.
Accompanying all these changes in asset prices is a sharp decline in the firm leverage, with
capital-to-net worth ratio cut to 1.527 from 2.339. Outcomes for the free access economy are
very much comparable with those from the target date economy. The average equity return
rate, its standard deviation, the equity premium and its volatility, the Sharpe ratio, and the
capital-to-net-worth ratio ω drop further, but only to a limited extent.

To understand these movements in asset prices, Figure 7 examines average portfolio age
profiles under the three asset market arrangements. In the benchmark economy, the average
portfolio share in equity starts off around 20% at age 30 and goes up with age, reaching 35% at
age 80. The equity premium mechanically drives most of this pattern. Given that equities tend
to outperform bonds, the equity portfolio share goes up as stockowners age due to rebalancing
frictions.

Compared to the benchmark economy, the target date economy shows substantially more
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Figure 7: Counterfactuals: Portfolio Age Profile

Notes. Benchmark economy features frictions in stock market participation and in rebalancing. Target date
economy has all households following the target date glide path. Free access economy allows free participation
and rebalancing for everyone. Y-axis is the average (unweighted) portfolio age profile.

equity holdings across almost all ages, especially for the young. The target date glide path
slides from around 80% for 30-year-old agents to about 40% at retirement and continues de-
clining to 25% at age 80. The higher average portfolio share in equities among the young
reflects two margins of agents’ portfolios: participation rate is lower in the benchmark econ-
omy (around 55% across all working ages); conditional on participation, the glide path sets
the portfolio equity share higher than an agent would be at in the benchmark economy.

The average portfolio share in equities in the free access economy is similar to the glide path
during working ages but differ substantially near retirement. Initially at 65%, the portfolio
share in equities stabilizes around 60% across all ages, before bouncing up to around 70%
at age 80. The initial decline in the equity portfolio share is a consequence of the decline in
non-tradable, relatively safe human capital (Viceira, 2001). The reversal of its course is due
to two reasons. Firstly, past a certain age, bequest motive starts to dominate. Secondly, post
retirement, agents no longer face risk in social security payments. As retirees draw down risky
financial savings, increasing risk exposure becomes optimal (Gomes, Kotlikoff and Viceira,
2008). Hence, post retirement, the equity portfolio share climbs back up.

The riskfree rate does not change as much in the two counterfactual economies due to two
opposite forces. In the benchmark economy, stock market non-participants price the riskfree
rate. In the target date economy, however, portfolios of all households follow the glide path.
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As a result, everyone prices the return on their portfolio, which is a mixture of equities and
bonds. The glide path is low in equities for retirees, suggesting mostly retirees price the
riskfree rate in the target date economy. Compared to non-participants in the benchmark
economy, retirees in the target date economy hold more equities, suggesting more volatile
consumption processes. This first force tends to drive down the riskfree rate. In contrast,
retirees do not have strong incentives to save. This second force tends to push up the riskfree
rate. With the two forces counteracting each other, the riskfree rate stays roughly the same
between the benchmark economy and the target date economy.

The reduction in the equity return volatility comes from changes in both the demand side
and the supply side. Intuition from the demand side involves elastic/inelastic asset demand.
As argued above, asset demand is inelastic in the benchmark economy, amplifying the equity
return volatility. The asset demand elasticity is higher in the target date economy because
households trade against market outcomes to stay on the glide path (Parker, Schoar and Sun,
2020). For example, when stocks outperform bonds, agents sell stocks and buy bonds to restore
the equity-bond ratio that the target date glide path mandates. In the free access economy,
demand elasticity further increases because agents can choose optimal portfolio weights. The
intuition from the supply side is that the economies are less leveraged, which stabilizes equity
returns, as equation (2.12) suggests. As demand rises for equities, equity financing becomes
cheaper than before. Given the cost of debt financing, riskfree rate, is the same, firms respond
by adjusting capital structure in favor of equities. Table 4 shows, the capital-to-net worth
ratio ω descends to 1.5 (target date economy) and 1.296 (free access economy) from 2.121
(benchmark economy). Therefore, firms de-leverage, and equity returns become less volatile.
Consequently, Table 4 shows the annualized standard deviation of equity dives to 14.6% (target
date economy) and 13.1% (free access economy) from 21.9% (benchmark economy).

5.2 Counterfactuals: Risk Sharing

To study why the aggregate Sharpe ratios are lower in the counterfactual economies, this
section investigates distributions of equity market share and Sharpe ratios by subgroup. Both
the target date economy and the riskfree economy redistribute towards the young and towards
households in the bottom 90% of the wealth distribution. Redistribution of equity shares
towards the young affects the aggregate Sharpe ratio by altering individual Sharpe ratios,
whereas redistribution of equity shares to the bottom 90% is mostly a compositional effect.

Figure 8 plots the equity market share by age for three different asset market arrangements.
Compared to the benchmark economy, working agents hold more equity shares in the target
date and the free access economies. Specifically, agents below age 60 hold about 65% of
equities in the benchmark economy, where as this number jumps to 85% under the target date
arrangement and 75% in the free access economy. In other words, both the target date and the

35



Figure 8: Counterfactuals: Equity Market Share by Age

Notes. Benchmark economy features frictions in stock market participation and in rebalancing. Target date
economy has all households following the target date glide path. Free access economy allows free participation
and rebalancing for everyone.

free access economies redistribute equity shares towards young workers, to a more aggressive
extent under the target date arrangement.

Age patterns of equity shares depicted in Figure 8 are a consequence of increased equity
holdings among the young. In fact, Figure 7 hints at these age patterns in the three economies.
In the target date economy, both stock market participation and, conditional on participation,
the portfolio share in equities are higher than those in the benchmark economy. This is espe-
cially true for workers for whom the glide path sets a high portfolio share in equities. As a
result, equity shares redistribute towards the young in the target date economy. This redis-
tribution is true to a lesser degree in the free access economy. Compared to the target date
glide path, retirees in the free access economy hold higher portfolio shares in equities. Thus,
redistribution of equity shares towards to the young is not as dramatic.

Figure 9 then breaks down equity market shares by the other dimension of heterogeneity:
wealth. The striking pattern is that the two counterfactual asset market arrangements substan-
tially reduce the concentration in equity holdings. The top 10% wealthiest households take
up 84% of equities in the benchmark economy, while their market share falls to 63% in both
the target date economy and the free access economy. In the mean time, households in the
bottom 90% see consistent gains in equity market shares, particularly for the bottom 50%. On
a whole, both alternative asset market arrangements redistribute equity shares to the bottom

36



Figure 9: Counterfactuals: Equity Market Share by Wealth
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90%, leading to resembling distributions equity market shares by wealth.

Increased access to equity markets drives the equity shares patterns along wealth portrayed
in Figure 9. In the benchmark economy, participation in equity markets is restricted to rich
agents who are either bequest receivers or who have enjoyed lucky draws of labor productivity.
In contrast, everyone participates in the stock market by default in the target date economy.
In fact, all portfolios are on the glide path. Therefore, the target date economy witnesses a
drastic reduction the concentration of equity holdings.

To sum up the findings on risk sharing, the target date and the free access economies both
redistribute equity market shares towards the young and towards households in the bottom
90% of the wealth distribution.

5.3 Counterfactuals: Welfare

This section studies how increased access to equity markets affect welfare through asset prices
and risk sharing. On average, target date investing generates welfare gains in remaining life-
time consumption equivalent for households in the bottom 90% at the expense of the top
10% richest households. Free access to asset markets results in very similar welfare outcomes
compared to the target date economy.

To measure welfare implications, I calculate the remaining life-time consumption equiva-
lents. The interpretation of this measure is the percentage boost in consumption for the rest of
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the lifetime, so that a benchmark agent would be just as well-off as an agent from an alternative
economy, both of whom are of the same age.

Figure 10: Counterfactuals: Consumption Equivalent - Target Date Economy

Notes. Consumption equivalents are calculated using risk neutral utility. Simulation keeps both aggregate and
idiosyncratic shocks identical in the two economies. Cross sections of agents are taken from the ergodic set of
the economy. Benchmark economy features frictions in stock market participation and in rebalancing. Target
date economy has all households following the target date glide path. Free access economy allows free
participation and rebalancing for everyone. Consumption equivalent is defined for every age, in terms of
remaining life-time consumption.

I start by examining consumption equivalents measured using risk-neutral utility. In other
words, at any age, the welfare interpretation is the remaining lifetime wealth discounted to
the present, using the intertemporal discount rate. Figure 10 plots the average risk-neural
consumption equivalents for all households and also by wealth distribution. Overall, Figure 10
indicates that there is substantial redistribution of wealth from the top 10% richest households
to the bottom 90%, especially among the retirees.

The welfare outcome under target date investing implies heterogeneous gains and losses
across the wealth distribution. For people in the bottom 90% of the wealth distribution, their
remaining lifetime wealth is 20-25% higher than the benchmark case. The main driver is that
everyone is participating in the stock market by default using target date funds. Therefore,
households who save with riskfree rate only in the benchmark economy, due to participation
friction, can accumulate assets at a much higher return rate. The slight dip towards the end
of the lifecycle is a result of the target date glide path mandating a lower portfolio share
in equities during retirement than the benchmark economy, as Figure 7 demonstrates. Notice
that this number is substantially lower than the 50% wealth increase calculated in Mitchell and
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Utkus (2022) because general equilibrium effects have substantially lowered stock returns, as
suggested in Table 3. Still, the boost in remaining lifetime wealth, as measured by risk-neutral
utility, for the bottom 90% of households is huge.

While the bottom 90% are able to accumulate much more wealth in retirement, the top
10% suffer tremendous wealth losses across all ages. In retirement, the top 10% wealth shrinks
around 60%, compared to the benchmark economy. Even when retirement wealth is dis-
counted to the beginning of the lifecycle, the top 10% richest households still lose close to
30% of remaining lifetime consumption equivalents. The culprit for these huge wealth and
welfare losses is the dramatic reduction in the equity premium. As Table 3 suggests, the top
10% riches households, who are participants in both economies, accumulated wealth at a 6.3%
annual rate in the benchmark economy but at only 2.5% in the target date economy.

Inspecting the age profile of wealth by wealth distribution confirms the drastic redistribu-
tion that target date investing leads to. Figure 11 plots the average wealth held at an age for
the top 10% and the bottom 90% respectively in the two panels. Compared to the extreme un-
equal wealth distribution induced by participation and rebalancing frictions in the benchmark
economy, the target date funds substantially increase wealth holdings by the bottom 90% at
the cost of dramatically reducing the top 10% wealth stock, across all ages.

Figure 12 then compares the risk-neutral welfare outcomes with the case when the relative
risk aversion is 10, which is the maximum risk aversion parameter that Mehra and Prescott
(1985) consider to be acceptable. Examining the gap between the risk averse case against the
risk neutral case, the bottom 90% of households enjoy smaller welfare improvements due to
holding on to more risk in their portfolios. As people in the bottom 90% of wealth distribu-
tion tend to have small buffer stock, the welfare reduction due to higher exposure to risk is
more pronounced (Carroll, 1997). Nonetheless, even when wealth gains in retirement are dis-
counted to the beginning of the lifecycle, on average, these agents still gain 18% of remaining
lifetime consumption equivalents. The top 10% richest households do not exhibit substantially
different welfare outcomes than the risk-neutral case. Overall, using a relative risk aversion
parameter as high as 10 leads to the similar conclusion on the welfare effects of target date
investing from the general equilibrium.

Figure 13 repeats the welfare analyses in Figure 12 for agents in the free access economy.
Opening up equity markets further by dropping rebalancing frictions leads to additional wel-
fare gains during working ages but slightly lower gains at the beginning and the end of the
lifecycle. Nevertheless, these differences are minute, less than 5 percentage points in consump-
tion equivalents, compared to target date welfare gains. Much of these improvements comes
from overall more equity holdings across all ages (Figure 7) and more stabilized equity returns
(Table 4). Given that general equilibrium forces substantially stabilizes equity returns and re-
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duces the equity premium in both the target date and the free access economies, differences
in portfolio choices do not lead to drastically different welfare results. Welfare outcomes are
very similar between target date and free access economies.

6 Conclusion

To conclude, this paper investigates the implications of increased access to equity markets for
asset prices, inequality, and welfare. I set up an overlapping generations model with idiosyn-
cratic and aggregate risk to study lifecycle portfolio choices in general equilibrium. I then
solve the model by applying machine learning techniques to overcome the curse of dimen-
sionality in solving the model. The benchmark economy features frictions in equity market
participation and in rebalancing to replicate portfolio dynamics before the latest financial in-
novations. Two alternative asset market arrangements that resemble recent innovations then
alter the two benchmark frictions one at a time.

Frictions in stock market participation and in rebalancing help explain puzzling asset pric-
ing dynamics. After quantification using portfolio data between 1995 and 2001, the benchmark
economy produces realistic dynamics for macroeconomic aggregates and for asset prices,
matching wealth and portfolio concentration. The two benchmark frictions distinguish this
model from standard consumption-based asset pricing models. Firstly, frictions in participa-
tion concentrate equity holdings among the wealthy who have high exposures to risk. Sec-
ondly, rebalancing frictions imply participants’ Euler conditions hold for returns on portfolios
but not for individual assets. For these reasons, the benchmark economy does not result in
the classical equity premium/riskfree rate puzzle.

Target date investing improves risk sharing, reduces inequality, and generates welfare gains
for the bottom 90%. The equity premium plunges from 6.3% to 2.5%, and the annualized
standard deviation of equity returns falls from 24.7% to 15.2%. The stabilization comes as
asset demand becomes more elastic, and firms adjust capital structure in response to changes
in equilibrium asset prices. In addition, the aggregate Sharpe ratio plummets from 0.255 to
0.164. This result is due to redistribution of equity shares towards the young and towards
households in the bottom 90% of the wealth distribution. The richest 10% of households
suffer large welfare losses (up to 60% in remaining life-time consumption equivalent) as equity
premium falls, while the rest of agents see 20% welfare gains.

Overall, outcomes are comparable between the target date economy and the free access
economy. Free access economy removes frictions in participation and in rebalancing altogether,
leading to further improvements in risk sharing, a bigger reduction in inequality, and more
welfare gains across the economy. The equity premium dips to 2.0%, with annualized standard
deviation of equity returns shrunk to 14.7%. The aggregate Sharpe ratio edges lower to 0.143.
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All households enjoy welfare gains, in a similar fashion as the target date economy.

Findings in the paper suggest that increasing equity market access has large general equi-
librium effects on asset prices, inequality, and welfare. Evaluations of retirement security
policies that encourage the adoption of recent financial innovations, such as the 2007 Pension
Protection Act and the 2022 Secure Act 2.0 (or known as the RISE & SHINE Act in the senate),
should take into consideration these general equilibrium implications.
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Appendices
A Household Problem

V(Xt) = sup
c,F

Et

[∫ t+aexit−at

t
e−ρ(u−t)−

∫ u
t η(as)ds

(
u(cu) + η(au)uB(qu)

)
du
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{
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ft st ⩾ 0

et
et+bt

st < 0

det = (µe
tet + f̃tst)dt + σe

t etdWt

dbt = [r f
t bt + (1 − f̃t)st]dt

ct, Ft, et, bt ⩾ 0,

where T f
1 is the arrival time for the first jump in a Poisson counting process N f

t with intensity

λ f (yt−)


+∞ yt− = star
λ̄ f yt− = high
0 otherwise.
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B Firm Problem

Each individual firm solves

max
Dt,It,ωt

Et

[∫ t+s

t
e−ρ̄slog(Ds)ds

]
s.t.

dNt =

([
It

Kt
− Φ
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It

Kt

)
− δ(Zt)
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Kt − r f

t B f
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)
dt + σKtdWt (B.1)

Dt = MPKtKt − It (B.2)

ωt =
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Nt
(B.3)

Kt = Nt + B f
t (B.4)

Φ(
It

Kt
) =

1
2

ϕ(
It

Kt
− δ(Zt))

2. (B.5)

Rewrite equation (B.1) with (B.2)-(B.5)

dNt =

(
(MPKt − δ(Zt))[1 −

1
2
(MPKt − δ(Zt))]ωtNt − r f

t ωtNt

+[ϕ(MPKt − δ(Zt))− 1]Dt −
1
2

ϕ
D2

t
ωtNt

+ r f
t Nt

)
dt + σωtNtdWt,

or, for simplicity,
dNt = µe

tdt + σe
t dWt.

Let Xagg
t be the collection of aggregate state variables (distribution replaced by generalized

moments) except jump Zt, and

dXagg
t = µ

agg
t dt + σ

agg
t dWt

Conjecture the firm value function as

V(Xagg
t , Zt, Nt) = χ0(Xagg

t , Zt) + χ1log(Nt) (B.6)

The firm HJB is

sup
ωt,Dt

µ
agg
t VX + µe

tVN +
1
2

trace
[ [

σ
agg
t
σe

t

] [
σ

agg
t σe

t
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HessX,NV
]

−ρ̄V + log(Dt) + λZ

[
V(Xagg

t , Zt + ∆Z, Nt)− V
]

Notice that conjecture (B.6) implies that the last row and the last column of HessX,NV are
populated by 0’s except the bottom right corner element VNN. Therefore, HJB can be re-
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written as

sup
ωt,Dt

µ
agg
t VX + µe

tVN +
1
2

trace
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agg
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The implied first order conditions with respect to ωt is

(MPKt − δ(Zt))[1 −
1
2

ϕ(MPKt − δ(Zt))]− r f
t +

1
2

ϕ
D2

t
ω2

t N2
t
− σ2ωt = 0

which means that payout is proportional to net worth:

Dt = ωtNt

√
2
ϕ

{
r f

t + σ2ωt − (MPKt − δ(Zt))[1 −
1
2

ϕ(MPKt − δ(Zt))]

}
︸ ︷︷ ︸

x

(B.8)

The first order condition with respect to Dt is

χ1[ϕ(MPKt − δ(Zt))− 1]x − χ1ϕx2 +
1

ωt
= 0 (B.9)

The roots to (B.9) are

[ϕ(MPKt − δ(Zt))− 1]±
√
[ϕ(MPKt − δ(Zt))− 1]2 + 4ϕ

χ1ωt

2ϕ

Given that x > 0,

x =
[ϕ(MPKt − δ(Zt))− 1] +

√
[ϕ(MPKt − δ(Zt))− 1]2 + 4ϕ

χ1ωt

2ϕ
. (B.10)

Equating x implied by equations (B.8) and (B.10) yields

r f
t =

1
8ϕ

{
[ϕ(MPKt − δ(Zt))− 1] +

√
[ϕ(MPKt − δ(Zt))− 1]2 +

4ϕ

χ1ωt

}2

+ (MPKt − δ(Zt))[1 −
1
2

ϕ(MPKt − δ(Zt))]− σ2ωt.

(B.11)

Equation (B.11) also implies that ωt does not depend on Nt. This, combined with Dt being
proportional to Nt, mean that

χ1 =
1
ρ̄
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in order for HJB condition (B.7) to be true for all Nt. Therefore,

r f
t =

1
8ϕ

{
[ϕ(MPKt − δ(Zt))− 1] +

√
[ϕ(MPKt − δ(Zt))− 1]2 +

4ϕρ̄

ωt

}2

+(MPKt − δ(Zt))[1 −
1
2

ϕ(MPKt − δ(Zt))]− σ2ωt

(B.12)

Substituting (B.12) into (B.8) gives

Dt =
1

2ϕ
ωtNt

{
[ϕ(MPKt − δ(Zt))− 1] +

√
[ϕ(MPKt − δ(Zt))− 1]2 +

4ϕρ̄

ωt

}
(B.13)

Since a firm is a price taker, choice variables do not show up in µ
agg
t and the trace term in

equation (B.7). Therefore, first order conditions for choice variables do not involve aggregate
state variables (myopia). Plugging in χ0(Xagg

t , Zt) into HJB (B.7) along with optimal choices
and condition (B.13) yields a system of two PDEs that do not involve Nt. Solving the system
of PDEs pins down χ0(Xagg

t , Zt) but does not change the optimal decisions. One can verify
sufficiency, following the same steps as in a Merton’s problem with logarithmic utility.
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C Social Security Replacement Rate
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D Relative Consumption Error
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E Basis Function

This section investigates how the trained basis function maps asset holdings into moments of
the distribution. The computer learns to distinguish between heterogeneous agents from how
they affect the aggregate dynamics. Figure E.16 shows the basis function after training. In
this scatter plot, each dot represents an agent, and they differ in equity position (x-axis), bond
position (y-axis), and age (color). Younger agents are in darker colors, while older agents are
in brighter colors. The z-axis is the value of the basis function G. 0 stands for the origin of the
x-y plane, (0, 0).

The first pattern that stands out from Figure E.16 is that the computer has separated out
low-wealth agents from their high-wealth counterparts. Dots representing agents with small
equity and bond holdings cluster around a triangular plane in the top-left corner. From the
perspective of the computer, these low-wealth agents do no affect the aggregate dynamics in
the same way the wealthy agents do.

A second pattern is that the computer distinguishes households with different ages, even
if they have identical equity and bond holdings. Dots of different colors stand apart in the z-
direction for a given (x,y) coordinate. If the mean equity or mean bond position was sufficient
for the model, the graph for the basis function would have shown lines in either the (x,z)
plane or the (y,z) plane. If using both means was enough, the graph should have displayed a
surface. The fact that we do not observe lines or a surface indicates that using first moments
of equity and bond holdings does not suffice. Indeed, Figure F.17 and Figure 1 show that
the generalized moments not only track the aggregate capital but also picks up information
related to other statistics of the economy, such as the price-dividend ratio and the wealth share
of workers, etc. The computer confirms that age is an important source of heterogeneity in
this model.
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F Generalized Moment and Aggregate Capital

Figure F.17 plots the generalized moments and the (negative) capital stock from simulated
model periods. Each dot represents a quarter. The size of a dot shows the payout yield in that
quarter, whereas the brightness of a dot signals the wealth share held by workers for the same
quarter. The generalized moment is generally increasing in (negative) capital. Periods where
workers hold more wealth (brighter dot) tend to register higher values in the generalized
moment, although the exact values also depend on the price-dividend ratio.

Figure F.17 illustrates that the generalized moments are not a univariate function of capital.
Despite a close relationship between the two variables, the generalized moment incorporates
additional information. Figure 1 in Section 3.1 plots time series for the generalized moment
and other statistics of the economy. Capital stock, price-dividend ratio, and workers’ wealth
share move closely with the generalized moment, although none of them completely coincide.
This pattern implies the first moment of wealth is not a sufficient statistic from the computer’s
perspective.
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G Idiosyncratic Labor Productivity

Z = 0

i, j low high star stationary
distribution

low 0.6 0.4 0 0.104930
high 0.05 0.948625 0.001375 0.839444
star 0 0.02075 0.97925 0.055626
y 0.107914 0.719424 5.805755 0.938189

Z = 1

i, j low high star stationary
distribution

low 0.3 0.7 0 0.031369
high 0.025 0.973625 0.001375 0.879255
star 0 0.02075 0.97925 0.089376
y 0.107914 0.719424 5.805755 1.005461
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H Conditional Asset Prices

Table 5: Counterfactual: Asset Prices
Annualized Asset Return and Standard Deviation

Equity Return Riskfree Rate Equity Premium
E[rt] σ(rt) E[r f

t ] σ(r f
t ) E[rt − r f

t ] σ(rt − r f
t )

Boom
Becnhmark 0.060 0.243 0.006 0.005 0.054 0.242
Target Date 0.026 0.152 0.006 0.006 0.020 0.152
Free Access 0.022 0.148 0.007 0.006 0.014 0.148

Bust
Becnhmark 0.055 0.251 -0.015 0.005 0.070 0.251
Target Date 0.016 0.152 -0.015 0.006 0.031 0.152
Free Access 0.015 0.146 -0.014 0.006 0.029 0.145

Notes. Benchmark economy features frictions in stock market participation and in rebalancing. Target date
economy has all households following the target date glide path. Free access economy allows free participation
and rebalancing for everyone.
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Figure 11: Counterfactuals: Consumption Equivalent - Target Date vs. Free Access

Notes. Average wealth by age and by wealth distribution is calculated from simulation cross sections in the
ergodic set of the economy. Aggregate an idiosyncratic shocks are kept the same in both economies. Benchmark
economy features frictions in stock market participation and in rebalancing. Target date economy has all
households following the target date glide path.
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Figure 12: Counterfactuals: Consumption Equivalent - Target Date vs. Free Access

Notes. Consumption equivalents are calculated using risk neutral utility and CRRA utility with risk aversion 10.
Agents are ranked by wealth according to their benchmark economy wealth holdings. Benchmark economy
features frictions in stock market participation and in rebalancing. Target date economy has all households
following the target date glide path. Free access economy allows free participation and rebalancing for
everyone. Consumption equivalent is defined for every age, in terms of remaining life-time consumption.
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Figure 13: Counterfactuals: Consumption Equivalent - Target Date vs. Free Access

Notes. Agents are ranked by wealth according to their benchmark economy wealth holdings. Consumption
equivalents are calculated through simulation of cross sections taken from the ergodic set of the economy.
Benchmark economy features frictions in stock market participation and in rebalancing. Target date economy
has all households following the target date glide path. Free access economy allows free participation and
rebalancing for everyone. Consumption equivalent is defined for every age, in terms of remaining life-time
consumption.
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Figure C.14: Generalized Moment and Other Statistics

Notes. Data is from Goss, Clingman, Wade and Glenn (2014), calculated by the SSA Office of the Chief Actuary.
Income is the high 35 years career-average earnings indexed by the national average wage index (adjusted for
inflation).

Figure D.15: Average Relative Consumption Errors

Notes. Each epoch contains 80 episodes. The upper figure checks the relative consumption errors across all
individual agents who are unconstrained. Unconstrained agents are those who consume less than 96% of all
cash on hand (wealth and income combined). The lower figure checks the relative aggregate consumption error.
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Figure E.16: Trained Basis Function

Notes. The 3-D plot shows the trained basis function (z-value) by equity (x-value) and bond (y-value) positions.
Each dot represents an agents in the economy. Young agents are in dark colors, while older agents are in
brighter colors. 0 stands for the origin of the x-y plane.

Figure F.17: Generalized Moment and Other Statistics

Notes. Scatter plot displays the generalized moment and the (negative) capital stock for 800 quarters. Each dot
represents a quarter. The size of a dot describes the payout yield, where as the brightness of a dot shows the
wealth share held by workers.
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I Transition Dynamics

So far the analysis has been focused on comparing stochastic stead states under the bench-
mark, target date, and free access cases. In this section, I consider the transition dynamics as
target date funds are adopted gradually, which reflects the potential path we are on after the
passage of the 2006 Pension Protection Act and the 2022 Secure Act 2.0.8

As an experiment, I increase the target date users gradually in the economy and inspect the
transition of asset prices and inequality. Specifically, starting from the stochastic steady state
of the benchmark economy, each new cohort that enters the model is invested in target date
funds by default. The full transition into the target date economy takes exactly one generation.

Figure I.18: Counterfactuals: Consumption Equivalent - Target Date vs. Free Access

Notes. The first 5 periods (100 years) drawn from the stochastic steady state of the economy. Beginning in
period 5, new cohorts enter the economy and hold target date funds by default. The transition finishes at period
7.5. From then on, the economy is in the target date stochastic steady state.

Figure I.18 depicts the stock market share in target date funds as the economy transitions
from the benchmark frictional scenario to the full target date economy. Each period is two
decades in the graph. The equity market share of target date funds rises dramatically for
two reasons. Firstly, each entering cohort replaces the old exiting cohort, so the number of
target date users increases as time passes. Secondly, as Figure 7 shows, target date cohorts
enter the economy with much higher portfolio shares in equities. The consequence is that the
distribution of equity holdings shift dramatically from benchmark agents to target date users,
which explains the rapid transition into the target date stochastic steady state.

These new cohorts participate in risk sharing and provide stock demand elasticity, driving
down the equity premium and the stock return volatility. Asset prices and inequality moves
in the direction of the target date outcomes almost linearly. Figure I.19 demonstrates the
transition by plotting outcomes of interests for every twenty years. The equity premium slides
smoothly from 6% in the benchmark economy to 2% in the target date stochastic steady state,
while the equity premium volatility drops from 25% to around 15%. At the same time, the top
10% equity market share plummets from above 70% to below 55%.

8The 2006 Pension Protection Act designated target date funds as a qualified default investment alternative
(QDIA) to money market funds. The 2022 Secure Act 2.0 mandated automatic enrollment into retirement accounts
for any new retirement plans in the U.S.
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Figure I.19: Counterfactuals: Consumption Equivalent - Target Date vs. Free Access

Notes. The first 5 periods (100 years) drawn from the stochastic steady state of the economy. Beginning in
period 5, new cohorts enter the economy and hold target date funds by default. The transition finishes at period
7.5. From then on, the economy is in the target date stochastic steady state.
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